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Abstract. The iterative convolution ( IC)  technique previously reported for linear self- 
avoiding sequences is extended to the description of non-intersecting rings of hard-sphere 
segments. The principal geometrical features of rings of N = 20, 40 and 62 segments are 
determined, including the intersegmental spatial distribution functions, the mean-square 
intersegmental separations, the radius of gyration, bond correlation function and segment 
density distribution function. These quantities are compared with independent Monte 
Carlo estimates, and the results are found to be generally in good quantitative agreement. 
A sum rule for the bond correlation function is proposed for rings, whilst the segment 
density distribution is found to exhibit serrations which are unresolved in the Monte Carlo 
data scatter. These serrations, moreover, occur at integral multiples of the segment diameter 
and are attributed to entropic processes associated with ring closure. 

1. Introduction 

The statistical properties of ring polymers have been investigated using a variety of 
analytical (Zimm and Stockmayer 1949, Casassa 1965, Burchard and Schmidt 1980), 
exact lattice enumeration (Wall and Hioe 1970, Rapaport 1975) and Monte Carlo 
(Bruns and Naghizadeh 1976, Baumgartner 1982) techniques. The general preoccupa- 
tion, as in the case of linear polymers, is with their description in terms of limiting 
exponent relations as the number of segments N + CO. Here, however, we restrict our 
discussion to finite-ring systems. 

Analytical descriptions have generally neglected excluded-volume effects (Zimm 
and Stockmayer 1949), and whilst these random-flight models permit closed expressions 
for the principal statistical parameters of the system such as the mean-square interseg- 
mental separations and the radius of gyration, the results do not bear immediate 
comparison with either realistic systems or the Monte Carlo and exact enumerations, 
each of which embody excluded-volume effects to a greater or lesser degree. Indeed, 
the inter-relation between off-lattice and on-lattice estimates is not at all clear (Bruns 
and Naghizadeh 1976, Croxton 1983), and accordingly we restrict our comparisons to 
the off-lattice Monte Carlo calculations of Bruns and Naghizadeh (1976) and, with 
reservation, the results of Baumgartner ( 1982). 

The fact that ring polymers may be synthesised by anionic methods and the existence 
of circular deoxyribonucleic acids provides substantial motivation for the analytical 
description of finite-ring systems. In this preliminary analysis we extend the previously 
reported iterative convolution (IC) technique (Croxton 1984a, b) to describe closed, 
perfectly flexible, self-avoiding, hard-sphere rings. As we point out in that publication, 
the IC technique yields the closest reported agreement between calculated and MC 
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estimates for self-avoiding linear polymers of short to intermediate length (N  f 20). 
Although those calculations were for flexibly connected spherical hard-sphere 
sequences, the incorporation of stereochemical and more complex central and 
non-central interactions poses no difficulty. The same observations are appropriate in the 
present case, although here we again restrict ourselves to the description of a flexibly 
linked sequence of hard-sphere segments for purposes of simplicity and comparison with 
extant MC data. 

2. Theory 

We refer the reader elsewhere (Croxton 1983, 1984a, b) for the detailed description of 
the IC technique. It is, however, appropriate to give an indication of the approach, 
and refer the reader to the original publication for details. The geometry of the ring 
is illustrated in figure 1. We are primarily concerned with the intrachain spatial 
probability distribution of segments Z( ij( N) within the ring of N segments. We note 
from the outset that translational invariance within the ring (unlike a linear polymer) 
means that Z (  ijl N) depends only upon the difference 1 i - j l = n for a ring of N segments 

Z ( i j ( N ) =  Z ( n ( N ) .  ( 1 )  

Figure 1. The ring geometry, indicating the principal statistical parameters. 

Moreover, these distributions are symmetric 

Correlation between segments ( i ,  j) is established directly through H( i, j) = 
exp( - @( i, j ) /  kT), where @( i, j )  is the ( i ,  j )  interaction potential, and indirectly through 
all routes of propagation via other segments in the sequence. 

In this paper we take (3 to be the hard-sphere potential with segment diameter (T = 1. 
By virtue of the chain connectivity, these intermediate segments are physically (and 

possibly chemically) distinct, and their contribution to the net correlation of (i, j) 
requires a mean-field representation of their overall effect. (This is quite different to 
the correlation of particles ( i , j )  in a bulk isotropic homogeneous fluid in which any 
of the neighbouring particles may be taken as representative.) For reasons discussed 
elsewhere (Croxton 1984a, b) we form the geometric mean of the indirect correlations 
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and write 

Z( i jJN)= H ( i j )  n . Z ( i k J N ) Z ( k j J N )  dk 
k # i , j  ” I  (3)  

where IIk represents the formation of the geometric mean of the convolution integrals 
through the kth segment, where 1 s k s N, # i, j .  Translational invariance enables us 
to write 

” 

where m = Ii - kl. It is now apparent that equation (4) also satisfies the symmetry 
condition (2). It is straightforward to cast equation (3) into iterative form (Croxton 
1984a, b), whereupon 

N f  N f  

It is a feature of these approximations that excluded-volume effects are progressively 
neglected with increasing chain length, and the treatment is therefore inappropriate 
for asymptotically long sequences for which the random walk result would be recovered 
(Croxton 1984a, b). We therefore restrict our computations and conclusions to finite 
linear and ring sequences of comparable size to those reported in machine-simulated 
analyses. 

It is appropriate to point out that in the very nature of the approximation made 
in the IC method, knotted configurations cannot be explicitly excluded, and these will, 
to a certain but indeterminate extent, contribute to the configurational averages. 
Equation ( 5 )  may be readily evaluated by fast Fourier transform techniques. 

With a knowledge of Z( ijl N), the mean-square intrachain distance is readily 
calculated 

(R’,)” =47r l o m Z ( n I N ) R :  dRn 

as is the mean-square radius of gyration 

The vector Rn connecting segments (i, j )  may be expressed in terms of the sum of unit 
bond vectors U k  

whereupon it follows that 

~ ( ~ O U ~ ) = ( R Z , + ~ ) - ~ ( R ’ , ) + ( R ~ , - I )  (9) 

where (uou,) represents the bond correlation function between vectors separated by n 
segments, where uo is the bond between segments N and 1 (figure 1).  
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For non-interacting rings there exists a number of exact results (Zimm and Stock- 
mayer 1949) which provide a useful basis for comparison of the excluded volume 
results. Designating these quantities by the subscript 0, we have 

(R i )o=a2n( l  -n /N) ,  (SE), = a2( N/ 12) (101, (11) 

where a is the bond length. For an uncorrelated ring of bonds the condition that the 
sequence returns to the origin is 

N 

i = O  i = n + l  

Forming the scalar product with U, and averaging yields 

(uoun)o= -1/N (12) 

that is, the bond correlations are independent of n. This interesting result may perhaps 
be most readily understood in terms of the equipartitioning of the overall return of 
the chain to the origin (( ) = - 1 )  amongst the N segments of the sequence. This 
equipartitioning is appropriate only amongst uncorrelated bonds ; excluded-volume 
effects will induce a correlation amongst neighbouring bonds and ( uoun) will in general 
be n-dependent. Nevertheless, the fact that the sequence ultimately returns to the 
origin implies that in all cases we have the sum rule 

N-l c (uoun) = -1 
n = l  

a result which may be immediately confirmed in the case of rings of uncorrelated 
bonds (equation (12)). For sequences of identical particles we also have 

These sum rules provide useful quantitative tests of the adequacy of any theoretical 
description of ring polymer systems, particularly equation ( 13a) which applies regard- 
less of chemical sequence or stereochemical structure. 

Our fundamental concern in this paper is with the intersegmental distribution 
function Z (  nl N) ,  and it is appropriate to compare this function with its non-interacting, 
essentially Gaussian (normalised) counterpart 

3 N  )312erp( -3NRZ, 1 
27ra2n( N - n )  2a2n( N - n )  ’ 

zo(nI N) = 

3. Results 

The distribution functions Z( tjl N )  and the principal geometric quantities (uoun), (RE) 
and (SL) were determined on the basis of the IC approximation for a variety of 
hard-sphere ring sequences; the results presented here are primarily for rings of N = 20, 
40 and 62 unit diameter flexibly connected segments. Comparison is made, where 
possible, with the Monte Carlo data of Bruns and Naghizadeh (1976) and Baumgartner 
(1982). Although the latter author criticises the sampling techniques of the former, 
we do not share his objections which are based on the alleged use of ‘dimerisation’ 
techniques, yielding biased ring configurations. In our opinion such techniques are 
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not used by Bruns and Naghizadeh and their results are not biased in this respect; 
accordingly we use their data as a primary basis for comparison with our results. 
Indeed, direct comparison with Baumgartner’s MC data is difficult for two reasons. 
Firstly, whilst retaining a bond length of unity, he adopts a segment diameter of 0.55. 
Although we have performed some calculations for such a system, direct comparison 
with Baumgartner’s MC results is further frustrated by the highly scaled presentation 
of his data. 

1 1 , , 1 , , , ,  

3.1. The distributions Z(nl  N )  

The log-log plots of Z (  N/21 N )  for N = 20, 40 (figure 2 )  and 62 are all characterised 
by a near-linear rise, peaking just before mid-range, in close qualitative agreement 
with the results of Baumgartner. The corresponding non-interacting distributions 
Zo( N / 2 /  N )  are of similar form, though substantially collapsed into the origin, reflecting 
the absence of excluded volume effects within the sequence. 

Shorter-range distributions ( n  < N / 2 )  show a progressively more pronounced dis- 
continuity or saw-tooth structure towards the end of their range, for given ring size 
(figure 2 ) ,  whilst non-interacting sequences remain essentially Gaussian; this we 
attribute to the strong entropic exclusion operating amongst sequentially close segments. 

The mean square separations ( R i )  within the ring are given by equation ( 6 ) ,  which 
in the case of non-interacting rings reduces to (equation (10)) 

(RZ,)o= n ( 1  - n / N ) ,  

which for a bond length of unity within a given ring of non-interacting segments gives 

a(Rt) , /an  = 1 - 2 n / N  

1 

i N = 4 0  

i 

IC /Y 1 

n 

Figure 3. The mean-square separations ( R ; )  within 
rings of N = 20,40 and 62 self-avoiding hard-sphere 
segments. The linear region ( O <  n c N/4) has a 
gradient - 2, which decreases substantially over its 
subsequent range (N/4% n s N / 2 ) .  The corre- 
sponding curves for self-intersecting rings are also 
shown for comparison (broken curves). 
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from which we observe that for small n /  N we recover what is essentially linear chain 
behaviour, whilst as n + N/2 the gradient tends to zero, reflecting the ring closurr. 
These general qualitative features are retained for self-avoiding sequences (figure 3) 
although excluded-volume effects yield a gradient - 2 for 0 < 4 s N/4, rapidly decreas- 
ing as n + N/2. Even for small n/ N, it is evident that the n-dependence differs from 
that within linear sequences, although precise comparison is difficult since the contribu- 
tion of end-effects in linear sequences is difficult to eliminate. The conclusion must 
be that the distinction is attributable to ring closure, and this we discuss further in § 4. 

Unfortunately, Bruns and Naghizadeh do not discuss the distributions Z (  nl N), 
but rather consider the segment density distribution 

p ( R I N ) = t '  Z ( n l N )  
" = I  

with the corresponding distribution for non-interacting rings 

7rR(N-2) 3(N-1) ( 2(N/12) - R 2  ) erf [(3R2(N-2)2)"2] 2N(N-1) ' (16) 

These distributions are compared in figure 4 for a 40 segment ring: the deployment 
of the chain is seen to be in good agreement with the MC data over the range reported. 
(Unfortunately in this and subsequent comparisons with the MC data no error bars 
are quoted by Bruns and Naghizadeh, although they do indicate the scatter of data 
points; the reader is referred to their original publication for a qualitative estimate of 
the statistical error involved.) 

An immediate consequence of the developing discontinuity in Z(n1 N )  as n + 1 
(figure 2) is the serrated form of the segment density p ( R )  (figure 4). This is not 
clearly resolved in the MC simulations and may have been lost in the statistical scatter. 

R 2  

Figure 4. The reduced segment density distribution p ( R I N ) / ( N -  1 )  for a self-avoiding 
ring of N = 40 segments. For small intersegmental separations the curve shows a serrated 
structure (inset), falling to zero at R = N/2. The Monte Carlo (broken curve) and random 
flight distributions are shown for comparison. 
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However, such a phenomenon has not been observed in our calculations for linear 
polymers (Croxton 1983, 1984a, b), and we therefore conclude that these serrated 
segment density distributions are not artefacts of the calculation but are, as we observe 
elsewhere in this paper, the consequence of the conflicting demands of ring closure 
and entropic delocalisation of the sequence. We note that these serrations occur at 
integral multiples of the segment diameter. We directly attribute this short-range 
structure of the segment density distribution to the small-n components of p ( R I N )  in 
equation (15). As we observed previously (0 3.1), the Z ( n / N )  become progressively 
more ‘saw-toothed’ (figure 2)  with decreasing n for a ring of given size, the near- 
discontinuity coinciding with the maximum range of the component distribution. 
Accordingly the sum ( 15) will exhibit serrations in the short-range region of the segment 
density distribution as illustrated in the inset of figure 4. 

On the basis of their MC simulations, Bruns and Naghizadeh observe that p ( R I N )  
has a functional form similar to the screened-Coulomb potential which arises in the 
theory of electrolyte solutions. However, statistical scatter fails to resolve any serrated 
structure in the short-range region of pMC( R140), whilst beyond the range investigated 
by Bruns and Naghizadeh ( R 2  > loo), ring connectivity substantially modifies the 
distribution from screened-Coulomb form ensuring, for example, that p (  RN121 N )  = 0. 
We shall return to this point later. 

The ratio 

g(RIN) = P ( R l ~ ) / P o ( R I N ) ,  (17) 

designated the radial distribution function by Bruns and Naghizadeh, represents a 
measure of the deviation from non-interacting behaviour. For a non-interacting ring 

The agreement with the MC data is seen to be good (figure 5 ) .  Clearly the deviation 
from non-interacting behaviour is pronounced. 

i 

100 200 300 
R2 

Figure 5. The radial distribution function g ( R I N )  
for N = 40. The Monte Carlo result (broken line) is 
shown for comparison. 

101 

t 

Figure 6. The bond correlation (u,u,) for rings of 
N = 20, 40 and 62 hard-sphere segments. 
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3.2. The bond correlation functions (uou,)  

The bond correlation functions for rings of N = 62, 40, 20 hard-sphere segments are 
shown in figure 6, and are quite distinct from the non-interacting result ( uoun) = - 1/ N 
(equation (12)). The bond correlation function is characterised by an initial positive 
short-range correlation (n s N / 4 )  followed by a negative long-range region ( N / 4 <  n < 
N/2). In each case the sum rule (equation (13a)) is satisfied, and we find 

N-l  C ( ~ 0 ~ , ) = - 1 . 0 0 0 0  N = 2 0  
-0.9999 N = 4 0  
-0.9999 N = 6%. 

n = l  

Whilst the qualitative form of these bond correlations is similar to those of Baumgartner, 
the reduction of excluded volume by a factor of - 0.125 probably accounts for his MC 

bond correlation function crossing the axis at - N/10. Baumgartner fits his bond 
correlation function as follows 

from which we find, assuming v = 0.59 (Baumgartner 1982) 

-1.0236 N = 2 0  
-0.9765 N = 4 0  

(u~u,)= -0.9412 N = 6 2  
N-1 

n = I  
-0.8530 N = 160 
-0.7779 N = 320. 

The failure of Baumgartner’s sum rule may be attributed to the inadequacy of the 
scaling function (20), since the sum rule is satisfied regardless of excluded-volume 
considerations (cf equation ( 1 3 4  et seq). In fact, Baumgartner’s scaling function is 
seriously questioned since the mean-square intrachain distance is given by (Baumgart- 
ner 1982) 

where a is the bond length. Using equation (20) for ( uouJ) we should have for n = N - 1 ,  
( R i )  = 1.00 ( a  = 1): instead we find 

N 20 40 62 160 3 20 

( R ; )  0.576 1.893 4.526 24.225 71.624 

Baumgartner’s results are presented in a highly scaled form and so his estimates of 
the scaling parameters, in particular his choice of exponents and therefore the fitting 
of data, may be responsible for the discrepancy. Further resolution of the data is 
impossible and any attempt to draw more detailed conclusions would be purely 
speculative and serve no useful purpose here. 
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3.3. The mean-square radius of gyration (Sh) 

The reduced mean-square radius of gyration ( S h ) / N  determined on the basis of 
equation (7) is exactly twice that of Bruns and Naghizadeh, who define the radius of 
gyration in terms of the segment density distribution 

- - 4.rr lom p ( R 1 N) R d R. 
N 2 N 2  

Accordingly, we double their MC estimates for the purposes of comparison with our 
results (figure 7). The corresponding result for non-interacting rings is (Sh),/ N = 0.083, 

1.0 1 I l l (  1 1 1 1 1 1 1  

5 10 20 50 
0.1 

N 

Figure 7. The reduced mean square radius of gyration (Sk)/ N for self-avoiding hard-sphere 
rings ( N  = 20,40,62) indicated by crosses. The Monte Carlo result is shown for comparison. 

The qualitative agreement is good in that both analyses yield a linear relationship 
for ln(SN)/N against In N for non-intersecting rings. However, the IC estimate is 
evidently much more strongly N-dependent. The estimate of the mean-square radius 
of gyration provides a particularly stringent test of the theory, involving as it does the 
second moment of all internal distributions. The origin of the discrepancy between 
the MC and IC estimates is not easy to identify since Bruns and Naghizadeh do not 
explicitly present their distribution functions. However, we observe that the range of 
p ( R I N )  explored by the machine simulations is substantially less than that required 
in equation (23) (figure 4); moreover, the fourth moment of the segment density 
distribution is required, and accordingly we anticipate a substantial underestimate of 
(Sk)/ N for large N. We also note that in the case of linear polymers, the IC technique 
yielded particularly accurate estimates of the radius of gyration (Croxton 1984a, b), 
and we have no reason to anticipate any poorer performance in the present analysis. 

The fact that ( S h ) / N  (MC)  is over-estimated for small N, with respect to the IC 
value, may be attributable to Bruns and Naghizadeh’s method of ring generation which 
certainly tends progressively to overestimate (Sh) as the ring size decreases, and (Sk)/ N 
even more so. This arises from an ambiguity in their definition of ring closure involving 
the intersection of two of the N segments to form the closed loop. Whilst relatively 
unimportant for large rings, this discrepancy becomes progressively more significant 
with decreasing loop size. 
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On the basis of a least-squares fit to the data presented in figure 7 we conclude 
whilst Bruns and Naghizadeh report an exponent of 0.24, that ( S $ ) / N  varies as 

in close agreement with the result reported for short self-avoiding linear sequences. 

4. Discussion 

One important conclusion which emerges from this study concerns the ability of the 
iterative convolution technique to provide a good quantitative description of the 
principal geometric features of self-interacting polymer sequences on the basis of 
comparison with their simulated counterparts. The distortion of the spatial ring 
distributions with respect to both linear polymer (Croxton 1984a, b) and non-interacting 
systems is striking. In all cases the ring distributions 47rR2Z( n lN)  are characterised 
by a monotonic increase in amplitude, followed by a rapid decrease, tending towards 
a discontinuity with decreasing n. This we understand in terms of the entropic repulsion 
which develops amongst closely confined segments (small n )  (Croxton 1983). The 
entropic requirement that the chain be as spatially delocalised as possible conflicts 
with the condition that the chain ultimately returns to the origin to form a ring, 
producing the dramatic fall-off in the short-range distributions. 

This effect may be most simply demonstrated for the unrestricted random coil. The 
normalised distribution for the end-to-end distance for such a sequence has already 
been given (equation (14)). The fraction of configurations permitting the ends of the 
chain to approach to within a distance b to form a closed loop of size N is 

flrmg/fl = lob ZO(RIN) dR. 

If N is large and b is small, the exponential in (14) can be approximated by unity, 
whereupon 

r b  

f lr ing/f l= ( 3 / 2 ~ N a ~ ) ~ ’ ~  J 47rR2 dR = ( 3 / 2 ~ N a ~ ) ~ / ~ V  ( n  = N -  1)  
0 

where the approach volume V = 4.rrb3/3. Thus, the entropy change in forming a loop 
from a linear polymer is 

ASring= -3kT In N +  kT l n [ ( 3 / 2 ~ a ’ ) ~ / ~ V ]  

and the per-segment increase in free energy in closing the linear polymer to form a 
loop is 

(Jacobson-Stockmayer equation) 

AGring = ( 1/N){ikT2 In N - kT2 ln[(3/2~a’)~/’V]} (24) 

which rises dramatically with decreasing loop length. Whilst such a simplified analysis 
is not appropriate for the detailed description of self-avoiding systems such as those 
under consideration here, the model nevertheless provides qualitative support for our 
discussion of the processes governing short internal ring distributions. 

Both on this basis and direct comparison of IC distributions we conclude that the 
rapid fall-off in the fully extended distribution is not an artefact of the technique, but 
is a real feature of self-avoiding ring distributions. Accordingly, the progressively 
saw-toothed form of Z( nl N )  with decreasing n is attributed directly to ring closure- 
with the inevitable consequence of a serrated structure in the short-range form of the 
segment density distribution p(  RIN) .  However, these serrations are not resolved in 
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Bruns and Naghizadeh’s MC distributions, although this may be attributable to the 
breadth of MC data scatter which exceeds the amplitude of the serrations. These 
authors observe that within the range and statistical scatter of the MC data the 
distribution appears consistent with a screened-Coulomb function. However, we con- 
clude that neither the short-range nor the long-range form can be described as screened- 
Coulombic, the departure being specifically attributable to the features of ring con- 
nectivity. 

We note that the discontinuity in Z ( n l N )  relaxes uniformly as n - .  N/2, and 
accordingly doubt whether the short distributions show a true discontinuity. Indeed, 
for n<c N we should expect Z(nlN), , , - ,Z(nlN), i , , , ,  where the subset n is far from 
the ends of the linear sequence. We have no evidence to suggest that ring and internal 
linear polymer distributions cannot be related by scaling (Baumgartner 1982). 

The estimates of (SL) are in qualitative agreement with the MC data of Bruns and 
Naghizadeh. However, calculations based on a segment diameter/bond length ratio 
of 0.55 yield values which substantially exceed Baumgartner’s MC estimates of (RL,,) 
and ( S , )  for such a system. The reason for the discrepancy is not clear. However, 
Baumgartner’s scaling of his data is based upon the presumed knowledge of a number 
of exponents, and an earlier test of his exponent representation of the MC data (0 3.2) 
suggests that his choice of exponent may not be entirely correct, and is corroborated 
in particular by the failure of Baumgartner’s bond correlation function (U,+,) to satisfy 
the sum rule (13a) .  
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